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TOPICAL REVIEW — Modeling and simulations for the structures and functions of proteins and nucleic acids
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The RNA tertiary structure is essential to understanding the function and biological processes. Unfortunately, it is still
challenging to determine the large RNA structure from direct experimentation or computational modeling. One promising
approach is first to predict the tertiary contacts and then use the contacts as constraints to model the structure. The RNA
structure modeling depends on the contact prediction accuracy. Although many contact prediction methods have been
developed in the protein field, there are only several contact prediction methods in the RNA field at present. Here, we
first review the theoretical basis and test the performances of recent RNA contact prediction methods for tertiary structure
and complex modeling problems. Then, we summarize the advantages and limitations of these RNA contact prediction
methods. We suggest some future directions for this rapidly expanding field in the last.
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1. Introduction
RNA involves a variety of biological functions by inter-

acting with other molecules.[1–4] A comprehensive determina-
tion of RNA and RNA-related complex structures is critical
to understanding the function and disease pathogenesis.[5–14]

For example, the HIV trans-activation response (TAR) ele-
ment is an RNA that interacts with Tat protein to ensure HIV
transcription.[15–17] The TAR–Tat contacts are required for
HIV trans-activation and replication. A riboswitch is another
RNA that can bind small molecules to regulate the gene ex-
pression through conformational changes.[18,19] The aptamer
domain can switch to a different conformational state upon
the molecule binding. Then, the expression domain forms the
selective stem-loop structure to regulate the gene expression.
The aptamer recognition mechanism provides a potential ap-
proach for bacterial drug development.[20–23] The COVID-19
is also an RNA virus. Understanding its structure and bind-
ing contact characteristics can offer valuable clues to the virus
origin, propagation, and treatment.

At present, some experimental methods can determine
the RNA tertiary structure.[24–27] X-ray crystallography re-
quires the well-crystallized RNAs. Unfortunately, flexible
RNA molecules are difficult to be crystallized. NMR can only
determine some small RNAs. Electron microscopy is expen-
sive and time-consuming. The RNA experimental structures
are limited due to these technical limitations.[28–32] Currently,
some computational methods can predict or model the RNA
and RNA-related complex structures by homologous frag-
ment modeling,[33–35] molecular dynamics simulation,[36–39]

and docking.[40] However, it is still challenging to predict
the large RNA structures with complex topology precisely.[41]

Previous research showed that two nonconsecutive nucleotides
in a sequence are defined as an intramolecular nucleotide–
nucleotide contact if they contain a pair of heavy atoms less
than 8 Å. The interface contact is defined with a shorter dis-
tance of less than 4 Å. One promising alternative approach is
first to determine the tertiary contacts and then use the contacts
as constraints to model the RNA structure.

Some biochemical experiments have been developed to
infer the RNA contacts. For example, SHAPE and muta-
tional profiling can infer the RNA motif contacts for RNA
structure analysis.[42] RNA–RNA crosslinking has been devel-
oped to probe the secondary and tertiary contacts from RNA–
RNA complex structures when x-ray crystallography or NMR
is not practical.[43] The CLIP-seq, RIP-seq, and footprinting
can identify the RNA–protein contacts.[44–47] However, the
available experiments work well on identifying RNA bind-
ing domains or motifs. It is still difficult to detect the ex-
act nucleotide–nucleotide contacts accurately. The alternative
computational RNA contact prediction methods are needed.

In this review, we introduce the theoretical basis of recent
computational methods to predict the RNA contacts, including
some works conducted in our lab (Table 1). The global scale
information is able to determine the contacts in RNA struc-
tures, while the local scale information is required to precisely
predict the contacts between two monomers. We summarize
the advantages and limitations of these RNA contact predic-
tion methods in the last.
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Table 1. A list of RNA contact prediction methods.

Method name Input information Comments Link Reference
Mutual Information RNA sequence intramolecular contacts http://dca.rice.edu/portal/dca/home [64–66]

mpDCA RNA sequence intramolecular contacts not available [77]
mfDCA RNA sequence intramolecular contacts http://dca.rice.edu/portal/dca/home [74]
plmDCA RNA sequence intramolecular contacts https://github.com/magnusekeberg/plmDCA [78]
DIRECT RNA sequence and structure intramolecular contacts https://zhaolab.com.cn/DIRECT/ [79]

Rsite RNA structure intermolecular contacts http://www.cuilab.cn/rsite [85]
Rsite2 RNA structure intermolecular contacts http://www.cuilab.cn/rsite2 [86]
RBind RNA structure intermolecular contacts https://zhaolab.com.cn/RBind/ [87]

PRIdictor RNA and protein sequences intermolecular contacts http://bclab.inha.ac.kr/pridictor/ [89]

2. Contact prediction for RNA tertiary structure
modeling
Currently, several computational methods have been

developed to predict RNA tertiary structures.[48,49] These
methods can be divided into three categories: graphics-
based, homology-based, and physics-based approaches. The
graphics-based methods provide a graphical interface for
users to construct tertiary structures intuitively by as-
sembling fragments.[50–54] The homology-based methods
build the RNA structure by the known homologous RNA
fragments.[33,55–59] The physics-based methods simulate the
folding process based on biophysics principles and then
search the minimum energy conformation by a scoring
function.[38,60–63]

Most of the above methods require sequence and sec-
ondary structure to build the RNA tertiary topology. Then,
these methods use root mean squared deviation (RMSD) and
interaction network fidelity (INF) to evaluate the structure.
Two nonconsecutive nucleotides in a sequence are defined as
an intramolecular nucleotide–nucleotide contact if they con-
tain a pair of heavy atoms less than 8 Å. It is generally rec-
ognized that the nucleotide–nucleotide contact constraints can
help to determine the RNA tertiary topology. One of the most
successful approaches is to infer the interacting nucleotides
from the sequence co-evolution across different species. The
following are the recent methods to predict the RNA tertiary
contacts.

2.1. Co-evolution based contact prediction

The mutual information (MI)[64–66] is developed to
identify the correlated mutation signals from homologous
sequences[67–73] to infer contact information. The contact
probability[74] is defined as follows:

MIi j = ∑
A,B

fi j(A,B)ln
fi j(A,B)

fi(A) f j(B)
, (1)

where A and B represent the nucleotide types (A, U, G, C,
and gap “–”). The fi(A) and fi j(AB) are single and pair fre-
quencies in the multiple sequence alignment. The MIi j mea-
sures the dependence between two columns in the multiple se-
quence alignment. If two nucleotides are less than 8 Å,[75,76]

the compensatory mutations are often observed to keep favor-
able contact energy. However, a recent study shows that mu-
tual information cannot disentangle direct contacts from in-
direct contacts.[77] For example, the high mutual information
may indicate the indirect correlation (i–m) due to the tandem
direct contacts (i– j, j–k, and k–m) (see Fig. 1). In this case,
there are many indirect contacts in the MI predictions.
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Fig. 1. The direct and indirect contacts in RNA structure. The interactions of
i– j, j–k, and k–m are direct contacts because they are in close distance. The
interaction of i–m is indirect contact due to the transitive correlation from
the tandem direct contacts. The yellow dot, red line, and blue line represent
a nucleotide, direct contact, and indirect contact, respectively. The HIV-
1 RNA molecule is colored in yellow with a cartoon representation (PDB
code: 5L1Z. N chain).[92]

Direct coupling analysis (DCA) is a statistical frame-
work to identify direct co-evolutionary nucleotide pairs in
multiple sequence alignment (see Fig. 2). DCA can disen-
tangle the direct contacts from indirect ones, and therefore
uncover the nucleotide–nucleotide contacts in RNAs. In the
DCA model, the frequencies of the single nucleotide and
nucleotide–nucleotide pair probabilities are defined as

Pi (Ai) = ∑
{Ak|k 6=i}

P(A1,A2, . . . ,AL) = fi(Ai), (2)

Pi j (Ai,A j) = ∑
{Ak|k 6=i, j}

P(A1,A2, . . . ,AL) = fi j(AiA j), (3)

where L is the sequence length, and P(A1,A2, . . . ,AL) rep-
resents the sequence probability (A1,A2, . . . ,AL) in the mul-
tiple sequence alignment. The global statistical model

108708-2



Chin. Phys. B Vol. 29, No. 10 (2020) 108708

P(A1,A2, . . . ,AL) is defined as

P(A1,A2, . . . ,AL) =
1
Z

exp

{
∑
i< j

ei j (Ai,A j)+∑
i

hi (Ai)

}
,

(4)

where Z = ∑
{Ai|i=1,2,...,L}

exp
{

∑
i< j

ei j (Ai,A j)+∑
i

hi (Ai)

}
is the

partition function. Then, the direct information (DI) can be
defined as follows:

DI = ∑
Ai,A j

Pi j(Ai,A j) ln
Pi j(Ai,A j)

fi(Ai) f j(A j)
. (5)

The hi (Ai) represents the energy of the single nucleotide Ai

in position i. And the ei j (Ai,A j) corresponds to the direct
coupling strength between two nucleotides in positions i and
j. The calculation of the interaction energy of ei j (Ai,A j) is
one demanding task. Several methods have been proposed to
tackle this problem.

a b
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Fig. 2. The co-evolution based RNA contact prediction. The co-evolution
based contact prediction can identify the RNA intramolecular contacts from
the homologous sequence across different species. The solid black lines,
red dots, and green dotted lines represent RNA sequences, nucleotides,
and RNA contacts, respectively. The HIV-1 RNA (PDB code: 5L1Z, N
chain)[92] is colored in yellow with a cartoon representation.

The mpDCA uses belief propagation to estimate single-
variable marginal distributions.[77] Compared with the MI ap-
proach, mpDCA can improve the direct contact prediction ac-
curacy but with expensive computational time. The mean-field
approximation based mfDCA was developed to overcome the
time-consuming problem.[74] The iterative parameter learning
in mpDCA can be solved in one single step through mean-field
approximation. The testing results show that mfDCA is 103 to
104 times faster than mpDCA. Therefore, mfDCA can be used
to analyze and identify the contacts in large molecules with
long sequences. The pseudo-maximum likelihood approxima-
tion based evolutionary couplings were developed to improve
the contact prediction accuracy further.[78] Their benchmark
test of 22 RNAs shows that the evolutionary couplings can
predict the long-range tertiary contacts and non-Watson-Crick
base pairs in RNAs.

2.2. Machine learning-based contact prediction

The direct coupling analysis identifies the nucleotide–
nucleotide contacts from the homologous sequence across dif-
ferent species. The mfDCA and plmDCA have been shown

to provide many native nucleotide–nucleotide contacts in the
riboswitch testing. However, available DCA methods need to
use the exclusive of evolutionary information extracted from
more than one thousand homologous sequences. The long-
range contacts in the loop–loop or junction regions dictate the
RNA structure topology. The accurate long-range contact can
reduce the structural modeling searching space and improve
the tertiary structure prediction. DCA is challenging to pin-
point the tertiary contacts in loop–loop and junction regions.

To address these issues, we developed DIRECT (direct in-
formation reweighted by contact templates) to improve loop–
loop and junction contact predictions.[79] DIRECT first learns
a lookup table of contact weights by a restricted Boltzmann
machine[80] from non-redundant experimental RNA struc-
tures. Then, this lookup table is used to improve RNA contact
prediction obtained from sequence co-evolution by DCA. Our
previous testing performance demonstrates that DIRECT im-
proves predictions for long-range contacts and captures more
tertiary structural features. Moreover, DIRECT maintains bet-
ter predictions, even when the number of available sequences
is insufficient. DIRECT is one reliable contact prediction
method that incorporates the restricted Boltzmann machine to
augment the sequence co-variation information with structural
template features.

3. Contact prediction for RNA complex struc-
ture modeling
It is even more challenging to determine the RNA com-

plex structure from direct experimentation. The number of
RNA–protein, RNA–RNA, and RNA–ligand complex struc-
tures is insufficient. At present, some docking methods have
been developed to predict RNA complex structures.[10,81–84]

Most available methods perform a conformation search for
the correct complex by using a scoring function. However,
it is challenging to precisely predict the RNA complex struc-
ture due to RNA flexibility and topological complexity. The
interface contact constraints with distance less than 4 Å can
facilitate the RNA complex structure modeling. The interface
contact can decrease the conformation search and improve the
accuracy. The following are the recent methods to predict the
interface contacts.

3.1. Structure-based contact prediction

Rsite[85] and Rsite2[86] are structure-based methods to
predict the contact binding sites of the complex structure
on RNAs. These two methods hypothesize that both the
most connected nucleotides and the most non-connected nu-
cleotides in RNA structure are potential binding sites. Rsite
first calculates the distances between each nucleotide and all
the other nucleotides in RNA tertiary structure. Then, it
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smooths the distance curve to reduce the noise by a Gaus-
sian filter. Rsite defines nucleotides in the extreme distance
curve as the contact binding sites. Unlike Rsite using the RNA
tertiary structure, Rsite2 determines the nucleotides in the ex-
treme distance curve of the secondary structure coordinates as
the contact binding sites. Rsite2 is much more efficient than
Rsite but with lower accuracy. However, both Rsite and Rsite2
miss the neighbor nucleotides of the extreme nucleotides. Be-
sides, both Rsite and Rsite2 only tested their performances in
small case studies. A large-scale non-redundant benchmark
needs to be performed for reliability testing.

Recently, we provided a structural network computational
method, RBind, to predict the contact binding sites of RNA
molecules.[87] The prediction can be calculated in the follow-
ing two steps. The first step is to transform the RNA tertiary
structure into a network. The main components of the net-
work are nodes and edges. RBind denotes a single nucleotide
as a node. Two nonconsecutive nucleotides in a sequence are
connected by an edge if they contain a pair of heavy atoms,
one from each nucleotide, less than 8 Å apart. RBind used
the Hamming distance in the network and removed the cova-
lent connections. The second step is to perform the network
property calculations to identify the contact binding sites.

In the constructed network, the closeness and degree val-
ues of each node in the RNA network are calculated to de-
termine the binding sites. The closeness of a node is defined
as the inverse of the sum of its shortest distances to all other
nodes. The degree of a node is defined as the number of edges
attached to the node. RBind determines the nucleotides as
RNA binding sites when their closeness and degree values are
both higher than the corresponding cutoffs. Our testing shows
that this network strategy has a reliable accuracy for RNA con-
tact binding sites prediction. Moreover, the false-positive pre-
dictions by RBind are typically located in the contact binding
area next to the catalytic pocket. This spatial proximity will re-
duce the impact produced by the false positives towards dock
simulations.

3.2. Machine learning-based contact prediction

The above-mentioned contact prediction methods do not
consider the interacting partners. Thus, the prediction results
may be the same for a given RNA sequence even the RNA
binds to different proteins. PRIdictor (protein–RNA interac-
tion predictor) is a machine learning-based approach (support
vector machine, SVM) to predict the contact binding sites us-
ing both RNA and protein sequences.[88,89]

The RNA and protein sequences are considered as a fea-
ture vector that can be categorized into three types: the RNA
global features (entire RNA sequence), RNA local features
(individual nucleotides or nucleotide triplets), and partner fea-
tures (protein sequence). The RNA global features contain

five elements: RNA sequence length and frequencies of the
four different nucleotides in a given RNA. The RNA local fea-
tures include 22 elements: molecular mass, pKa value, and 20
items for the interaction propensity of a nucleotide triplet with
20 amino acids. The partner features contain 420 elements:
20 elements for the sum of the normalized position, and 400
items for the dipeptide composition. In their testing, PRIdic-
tor shows Matthews correlation coefficient (MCC) of 0.69 by
using both RNA and protein sequences information but lower
Matthews correlation coefficient around 0.48 in independent
datasets testing.[89]

4. Future directions
The mutual information predicts contacts with many in-

direct interactions.[65] The DCA and later perdition meth-
ods can disentangle direct interactions from the interaction
networks.[77,90] The contact prediction can be used for RNA
tertiary structure modeling and indicate some interface inter-
action constraints in RNA-related complexes. Moreover, con-
tact prediction also can reveal potential functional sites. Thus,
the contact information is very useful for understanding the
RNA mechanism and drug development for RNA virus study.
In the following, we will first test the performances of the
above contact prediction methods, then summarize the advan-
tages and limitations of these methods.

We prepared two testing datasets. They can be download
from http://zhaoserver.com.cn/RNAcontact/index.html. The
dataset-I is a published riboswitch benchmark dataset (please
see Ref. [79] for details) for RNA intramolecular contact test-
ing. As shown in Fig. 3, the results show that accuracy (posi-
tive predictive value, PPV) of MI, mfDCA, plmDCA, and DI-
RECT is 0.26, 0.28, 0.31, and 0.34, respectively. The dataset-
II is an RNA–protein dataset for RNA intermolecular contact
testing. The results show that the accuracy (positive predictive
value, PPV) of Rsite, Rsite2, RBind, and PRIdictor is 0.62,
0.64, 0.67, and 0.62, respectively (Fig. 4). DIRECT and RBind
rank significantly better than the other available methods.
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Fig. 3. The accuracy of RNA intramolecular contact prediction methods.
The accuracy (positive predictive value, PPV) of MI, mfDCA, plmDCA,
and DIRECT are 0.26, 0.28, 0.31, and 0.34, respectively.
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Fig. 4. The accuracy of RNA intermolecular contact prediction methods.
The accuracy (positive predictive value, PPV) of Rsite, Rsite2, RBind, and
PRIdictor are 0.62, 0.64, 0.67, and 0.62, respectively.

The available RNA contact prediction methods can be di-
vided into the sequence and structure-based prediction cate-
gories. The sequence-based prediction methods (MI, mfDCA,
and plmDCA) detect the contacts from the RNA sequence co-
variations. It can be easily applied to RNA contact prediction
if the homology sequences are available. The global scale se-
quence information can determine the RNA topology. How-
ever, some limitations need to be improved: (1) The number
of sequences should be at least more than 5L, whereas L is
the length of the RNA.[79] It is difficult to use this approach to
predict large RNAs (> 150 nt) due to insufficient sequences.

(2) The sequence-based contact prediction approach consid-
ers two nucleotides being less than 8 Å if the compensatory
mutations are often observed. The RNA sequence with 4 nu-
cleotide types is more conserved than the protein sequence
with 20 residue types. It is difficult to predict the conserved
nucleotide–nucleotide contacts. (3) The sequence-based pre-
diction approach relies on the accurate multiple sequence
alignment. The improvements of multiple sequence alignment
methods or Rfam database[91] would increase the contact pre-
diction accuracy. (4) Users always only consider the top L/5
to L/2 contacts. We need to study how to choose the number
of contacts which would better suit different RNAs.

The structure-based methods (Rsite, Rsite2, and RBind)
use the local scale structural characteristic patterns for contact
prediction (see Fig. 5). For example, the base pairings, hy-
drogen bonding ladders in helix, and motif interactions can be
recognized as the characteristic structural features. One po-
tential contact is predicted when the structural characteristic
between the two nucleotides is close to the statistical archi-
tectural characteristic patterns. The major shortcoming of this
approach is that the RNA experimental structures are limited.
There are not enough diverse RNA tertiary structures to learn
the characteristic structural patterns. The contact prediction
accuracy will be low if the target RNA is different from all the
RNA structures in the training dataset.

RNA-protein complex structures

RNA structures

predicted contacts

machine learning

output

a

a

b

b

B

A

c

d

input

predicted contacts

Fig. 5. The structure-based RNA contact prediction. The RNA or RNA complex structural characteristic patterns can be used for the
RNA contact prediction by using machine learning. The red dots, blue dots, and green dotted lines represent nucleotides, residues,
and predicted RNA contacts, respectively. The HIV-1 RNA (PDB code: 5L1Z, N chain) and HIV-1 Tat protein (PDB code: 5L1Z, D
chain)[92] are colored in yellow and cyan with a cartoon representation, respectively.

The statistical inference approach combing both sequence
and structure would be a better way to improve the contact
prediction. For example, DIRECT learns a lookup table of
contact weights by a restricted Boltzmann machine from non-
redundant RNA structures.[79] Then, this lookup table is used
to improve RNA contact prediction obtained from sequence

co-evolution by DCA. DIRECT shows better accuracy of con-
tact prediction than available methods for the testing dataset-I.
The machine learning approaches have led to some promising
results. It is desirable to design new machine learning archi-
tectures to improve the RNA contact prediction accuracy. In
summary, the research of RNA contact prediction is still an
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unsolved problem. We need to put more effort into addressing
the limitations in this rapidly expanding field.
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